Questions? Call Us - 888-774-6005

Orders Received by 1:00PM ET Weekdays, Ship Same Day

RoHS

Compliant

Compliant

Fully

licensed

licensed

Johann Carl Friedrich Gauss (April 30, 1777 - February 23, 1855) was a German mathematician, astronomer, and physicist. Although Gauss made many contributions to science and to the understanding of the nature of electricity and magnetism, his true passion was mathematics. He referred to math as the “queen of sciences” and his influence on the field of mathematics was extraordinary. Gauss was, for example, the first mathematician to prove the fundamental theorem of algebra, and he proved it four different ways over the course of his lifetime. Gauss is widely celebrated as one of the greatest mathematicians in history.

Gauss was born in Brunswick, Germany into a working class family. His parents had little or no formal education, but their son went to school at age seven and immediately distinguished himself as a math prodigy who could compute complex mathematical solutions in his head. He learned German and Latin and received a scholarship from the Duke of Brunswick to attend an academy where he studied astronomy, math, and geometry.

On his own as a teenager he began to discover advanced mathematic principles, and in 1795 – at the age of 18 – Gauss became the first person to prove the Law of Quadratic Reciprocity, a theory of math that allows us to determine whether quadratic equations can be solved. The same year he entered Gottingen University.

While at the university, he made one of his most important discoveries. Using a ruler and compass, he constructed a regular 17-sided polygon or heptadecagon. While investigating the underlying theory behind this construction, Gauss revealed an important connection between algebra and geometrical shapes that successfully finalized work first begun by classical Greek mathematicians. Gauss thus changed the world of modern mathematics, while also adding to research begun by 16th century French philosopher and mathematician Renee Descartes.

After three years at the university, Gauss left without earning a diploma, and returned to Brunswick. Gauss completed a doctorate degree by submitting a thesis about algebra through the University of Helmstedt.

In 1801, Gauss wrote a paper that attempted to predict the orbital path of the dwarf planet or asteroid Ceres, which was newly discovered at the time. His conclusions were radically different from those submitted by other experts in the field of astronomy, but turned out to be the most accurate. To calculate the trajectory of Ceres, Gauss used the method of “least squares” which he had discovered but had not yet revealed to others. His least squares method was officially published in 1809, was widely embraced, and is used today by all branches of science to control and minimize the effect of measurement errors.

In 1805, Gauss married Johanna Ostoff, and in 1807 they moved to Gottingen from Brunswick, where he became the director of the Gottingen Observatory. Gauss was very happy at that time in his life. They had three children, but soon tragedy struck and left him grief stricken. In 1808, Gauss’ father died; in 1809, Gauss’ new wife died; and Johanna’s death was followed immediately by the death of Gauss’ second son. Gauss suffered from depression following this chain of events but later remarried and had three children with Minna Waldeck.

In 1818, Gauss began work that led to research in the field of differential geometry and the writing of significant theories related to the nature of curves and curvature. He published over 70 papers over the next 12 years, including one that won the Copenhagen University Prize.

In 1831, Gauss began to collaborate with Wilhelm Weber, a physicist. Gauss and Weber did extensive research into the nature of electricity and magnetism, creating a simple telegraph machine and discovering Kirchhoff's laws, a set of rules that apply to electrical circuits. The two men also developed the magnometer and the electrodynamometer, instruments that measured electric current and voltage. They also created innovative systems of units for electricity and magnetism. The term “gauss” came to describe a unit of magnetic flux density or magnetic induction.

Also in 1831, Gauss's second wife died after a long illness. He continued to live with his daughter, who took care of Gauss for the rest of his life.

Johann Carl Friedrich Gauss died February 23, 1855, in Göttingen, Germany.